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VARIETIES OF COMPETITIVE PARITY

THOMAS C. POWELL*
Australian Graduate School of Management, Sydney, New South Wales, Australia

Strategy research explains why some firms outperform others, typically using profit rates,
shareholder returns, and other continuous dependent variables. This paper investigates winning
as the dependent variable, as measured by distributions of annual industry leadership in profits
and returns to investors. This shift in dependent variable introduces alternative null models of
competitive parity, including skew distributions derived from the natural sciences, and empirical
distributions from nonbusiness domains such as chess, politics, sports, and beauty pageants. An
empirical study of 20-year leadership in U.S. industries shows that performance distributions
in business follow statistical power laws resembling those in natural phenomena, and closely
resemble distributions found in sports, politics, and other nonbusiness domains. The results
support a presumption of persistent performance advantages in business, but show that business
outcomes are indistinguishable from outcomes in the wider scientific and competitive landscape,
and are amenable to explanation using relatively simple heuristics. The paper shows how the
choice of null model shapes firm performance explanations, and explores the consequences of a
more inclusive approach to null models in strategy research. Copyright  2002 John Wiley &
Sons, Ltd.

STRATEGY AND FIRM PERFORMANCE

Amid the diversity of strategic management
research runs a persistent concern with explaining
variations in firm performance (Rumelt, Schendel,
and Teece, 1994; Grant, 1998; King and Zeithaml,
2001). The central, brute empirical fact in strategy
is that some firms outperform others. Strategy
theories explain this fact, and empirical studies
investigate its underlying causes, for example
identifying firm-specific performance correlates
(Hansen and Wernerfelt, 1989; Powell, 1995),
examining the persistence of abnormal returns
(Jacobsen, 1988; Waring, 1996; Goddard and
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Wilson, 1999), and decomposing variance into
industry, corporate, and business-specific effects
(Rumelt, 1991; McGahan and Porter, 1997; Brush,
Bromiley, and Hendrickx, 1999).

Mainstream empirical research often uses con-
tinuous accounting profit rates as the dependent
variable. There are important exceptions (e.g.,
shareholder returns, organizational mortality rates),
but the current range of alternatives may be cause
for concern. In particular, evidence suggests that
performance explanations are latent in the depen-
dent variables they explain (Meyer and Gupta,
1994; March and Sutton, 1997; Wensley, 1997): 3-
to 5-year profits correspond to executives’ tenures
and planning horizons, and are conducive to firm-
specific, managerial explanations (Rouse and Dael-
lenbach, 1999; Spanos and Lioukas, 2001); longer-
term profit rates randomize short-term fluctuations,
bringing market structures into account (Mueller,
1986; McGahan, 1999); long-term mortality rates

Copyright  2002 John Wiley & Sons, Ltd. Received 11 October 2000
Final revision received 5 July 2002



62 T. C. Powell

yield ecological and institutional theories (Hannan
and Freeman, 1989; Baum, 1996); cross-national
comparisons yield cultural, demographic, and geo-
graphic explanations (Porter, 1990); shareholder
returns produce stochastic and event-based expla-
nations (Jarrell, Brickley, and Netter, 1988; Reuer,
2001); and research on long-term change yields
theories of cycles, path dependency, and punctu-
ated equilibrium (Gersick, 1991; Romanelli and
Tushman, 1994; Morel and Ramanujam, 1999). As
March and Sutton point out:

It is often unclear what variable should be treated
as causally dependent. The choice is made by the
researcher . . . This judgment may be valid, but it
cannot be confirmed by the analysis, which can
only assess the likely strength of the relationships
on the assumption that the causal structure is cor-
rectly specified. (March and Sutton, 1977: 342)

Strategy researchers could arguably produce
more uniform results, and improved theoretical
integration, by narrowing the field of dependent
variables (Meyer and Gupta, 1994). But paradigm
consensus exacts a heavy price—if firm perfor-
mance is inherently complex and multivariate, then
performance research needs variety in the depen-
dent variable. In strategy research especially, it
seems unwise to constrain or preordain the wide
field of discovery about firm performance.

This paper investigates winning as the depen-
dent variable, construing performance as the distri-
bution of long-term frequencies of industry leader-
ship, as measured by rank orderings of total profit,
profit rates, and returns to shareholders. Using 20-
year Fortune data, the paper investigates the statis-
tical properties of frequency distributions of wins,
and compares these with null distributions pro-
duced analytically, empirically, and by simulation.

The choice of long-term frequency distributions
shifts the conceptual emphasis from firm-specific
performance to distribution-wide competitive dom-
inance and, as a consequence, to null models of
competitive parity. Because interpretations of com-
petitive dominance are colored heavily by expec-
tations, the paper develops four alternative models
of competitive parity: equal performance (‘perfect
parity’), randomly varying performance (‘stochas-
tic parity’), skew distributions (‘Pareto parity’),
and performance in nonbusiness domains (‘natural
parity’).

Whereas strategy research traditionally empha-
sizes stochastic parity (and to some extent, perfect

parity), the current study develops the case for
null models derived from other social, biological,
and physical sciences (Pareto parity), and from
nonbusiness competitive domains like football and
beauty pageants (natural parity). The empirical
data show that firm performance distributions
resemble those in other sciences and in nonbusi-
ness domains, and the paper explores how these
resemblances can illuminate new empirical and
theoretical pathways for strategy research. More
generally, the findings demonstrate the power
of the dependent variable to shape performance
explanations, and they argue strongly for greater
variety in our null models of competitive parity.

The following section briefly positions the paper
in relation to strategy research using profit rates
as the dependent variable. Subsequent sections
develop the four null models, present the data and
results, and discuss their implications for strat-
egy research.

CONTINUOUS PROFIT RATES AS
DEPENDENT VARIABLE

Continuous profit rates are the most commonly
used dependent variable in strategy research, and
they illustrate the coupling of theory and dependent
variable in strategy. Studies of short-term profit
rates tend to emphasize firm-specific advantages:
the PIMS research examined short-term ROI in
producing its findings on market share and product
quality (Buzzell, Gale, and Sultan, 1975); in com-
paring the relative effects of organizational and
economic factors, Hansen and Wernerfelt (1989)
used 5-year inflation-adjusted profit rates (ROA);
in studying differences within strategic groups,
Lawless, Bergh, and Wilsted (1989) used industry-
adjusted short-term profit rates (ROS, ROE, ROA);
in studying the firm-specific performance effects of
TQM initiatives, Powell (1995) used executives’
responses on Likert scales of 3-year profit per-
formance, then validated these against objective
profit measures (ROS, ROA); and, in studying the
impacts of causally ambiguous competencies, King
and Zeithaml (2001) used unadjusted short-term
profit rates (ROA).

The persistent profitability literature emphasizes
longer-term abnormal accounting profits, investi-
gating persistence across various industry sectors
and national contexts, e.g., the persistence of 23-
year profit rates in U.S. manufacturing (Mueller,
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1986); 21-year profit rates in German manufac-
turing (Geroski and Jacquemin, 1988); 20-year
profit rates in U.S. manufacturing and services
(Jacobsen, 1988); 19-year profit rates in Japanese
manufacturing (Odagiri and Yamawaki, 1990);
20-year profit rates in U.K. manufacturing and
services (Goddard and Wilson, 1996); 17-year
profit rates in U.S. pharmaceutical firms (Roberts,
1999); and 20-year profit rates in Australian man-
ufacturing (McDonald, 1999). Unlike shorter-term
research, the findings emphasize structural and
market forces, and are broadly consistent with
Jacobsen’s (1988:415) threefold conclusion: (1) a
variety of factors influence the persistence of profit
rates; (2) market factors generally drive profits
back to competitive rates; and (3) notwithstand-
ing (2), business-specific factors can isolate a firm
from competitive forces and produce long-term
abnormal profits.

In variance decomposition research, profit rates
have been used to estimate industry, corporate,
and business effects over a variety of time peri-
ods. Schmalansee (1985) used 1-year profit rates
(ROA) as the dependent variable across 1800 busi-
ness units in the 1975 FTC Line of Business (LB)
data; Rumelt (1991) used 4-year profit rates (ROA)
for two samples in the 1974–77 FTC LB data; and
McGahan (1999) extended Wernerfelt and Mont-
gomery’s (1988) usage of Tobin’s q, a continuous
measure incorporating investor expectations about
future accounting profit rates, estimating 14-year
industry, corporate, and business effects for 4900
U.S. corporations. The findings depend largely on
time horizons and industry contexts, but generally
support the conclusion that industry and business
effects far exceed corporate effects, with busi-
ness effects somewhat greater than industry effects
(Bowman and Helfat, 2001).

Accounting profit rates need little justification
as a dependent variable—they are clearly relevant
to strategy research, and the uniformity of mea-
surement has facilitated the field’s development
toward firm-specific, resource-based accounts of
superior performance. But the dependence of the-
ory on the choice of performance measure is
not widely acknowledged. In particular, contin-
uous profit rates carry both a latent, stochastic
null model of profit behavior (random variations
from ‘normal’ profit rates), and an explanation for
departures from that null (variations in continu-
ous independent variables). Ultimately, economet-
ric studies emphasize effect sizes, with differences

stemming largely from method and sampling vari-
ance. Thus, short-term profit rates presage firm-
specific effects (Rumelt, 1991; Hansen and Wer-
nerfelt, 1989; Powell, 1992, 1995); longer-term
profit rates bring exogenous industry factors into
account (Mueller, 1986; Jacobsen, 1988; McGa-
han, 1999); and single-industry profit rates yield
firm-specific attributions, e.g., attributing persis-
tence in pharmaceuticals to firm-specific innova-
tion (Henderson and Cockburn, 1994; Roberts,
1999).

In sum, econometric studies of profit rates have
contributed much to our understanding of firm per-
formance, but their findings are constrained by the
choice of dependent variable—the studies iden-
tify key independent variables and measure their
effect sizes, but they cannot do more. If perfor-
mance is complex, and if explanations are latent
in the dependent variable, then strategy research
requires multiple dependent variables and a wider
assortment of null models. As evidenced in less
traditional dependent variables, such as organiza-
tional mortality rates, alternative performance con-
ceptions are possible, and can contribute valuable
new methods and insights in strategy. This paper
conceptualizes firm performance as ‘winning,’ and
shows how this change of variable illuminates
alternative empirical methods, null models and the-
oretical connections.

WINNING AS DEPENDENT VARIABLE

To conceptualize winning as the dependent vari-
able, it is useful to consider a stylized industry in
which n firms compete over t years, without entry
or exit. Assume that each firm attempts to lead this
industry in some performance measure, which we
track year by year, ranking each firm 1 through
n for each year 1 through t . In particular, we are
interested in how many times each firm ranks first
in performance over the t years.

The zero entry and exit assumptions are unreal-
istic and rarely satisfied in industry, but can be
found in other competitive domains. In profes-
sional baseball, for example, the same 12 teams
competed for the National League championship
in the years 1969–88. We can imagine a scenario
under which league championships were divided as
equally as possible over this 20-year span. Under
this scenario, each of the 12 teams would win
the title at least once, and eight teams would win
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twice—thus, the distribution of wins would be
2,2,2,2,2,2,2,2,1,1,1,1.

In fact, the actual distribution of wins during
that span was 5,4,3,3,2,2,1,0,0,0,0,0—the Dodgers
won five times, the Reds won four, etc., and five
teams never won. This outcome clearly diverges
from the theoretical parity distribution (2,2,2,2,2,
2,2,2,1,1,1,1), and it would be useful to character-
ize this divergence statistically.

In characterizing this divergence, we refer to the
null distribution as perfect competitive parity, and
define it as the condition that, over t years, each
competitor finishes first t/n times, or if t/n is not an
integer, rounded to its nearest equivalent. Thus, for
example, if 10 firms compete for 20 years, perfect
parity is achieved if each firm wins twice. In
the National League example, with 12 competitors
over 20 years, perfect parity is achieved if each
team wins 20/12 (or 1.67) times, in which case
we make the rounding correction, with eight teams
winning twice and four teams once.

Many statistical methods have been used to
assess distributional disparities (see, for exam-
ple, Atkinson, 1970, 1975), but by far the most
widely used is the Gini coefficient (Xu, 2000). The
Gini, developed originally to measure inequality
in income distributions, ranges between 0 (per-
fect parity) and +1.00 (maximum disparity), and
has been used to study disparities in a variety
of applications (Chakravarty, 1988; Lee and Mur-
nane, 1992). There is no clear and accepted stan-
dard by which to assess whether a Gini coefficient
is ‘large’—in the National League data, the Gini
is 0.61, which in most contexts is relatively large.

The Appendix provides the formal method for
calculating Gini coefficients for t = 20 periods, but
the method is essentially that of the Lorenz curve,
and can be shown graphically. For an industry with
five firms competing for 20 years, perfect compet-
itive parity produces a distribution such that each
firm leads the industry (in, say, returns on sales)
four times. This implies zero Gini, and all other
distributions produce positive Ginis. In Figure 1,
five firms are arrayed on the horizontal axis, from
lowest performer to highest, and the columns show
cumulative ‘firsts’ for each firm. Under perfect par-
ity, ‘firsts’ are distributed 4,4,4,4,4, and cumula-
tive firsts ascend stepwise 4,8,12,16,20. However,
under alternative outcome 1,2,4,4,9, the cumula-
tive distribution is 1,3,7,11,20. Graphically, the
Gini coefficient for this outcome is the ratio of

area A to area [(A + B) − 20], in this case 18/40,
or 0.45.

Perfect competitive parity, i.e., all firms winning
the same number of times, constitutes a limiting
case, in the sense that no other null could produce
greater departures from empirical results, nor be
as likely to invoke causal explanations. It can
be shown, for example, that with five firms, the
probability of the distribution 4,4,4,4,4 is 0.0032,
even if all firms are identical (i.e., each firm
wins with probability 1/5 in each period). Thus,
an industry of five identical firms would produce
a nonzero Gini 99.7% of the time, and where
n = 10 firms, the proportion is 99.99%. Although
we expect to observe perfect competitive parity in
few empirical settings, the model has theoretical
value as a benchmark for subsequent null models.
Thus, we hypothesize as follows:

Hypothesis 1: Industry distributions of wins dif-
fer significantly from perfect competitive parity.

NULL MODELS AND COMPETITIVE
PARITY

Stochastic parity

Strategy research traditionally tests null models of
random performance variation, identifying firms
with above-normal performance, or independent
variables with statistically significant performance
effects. In this study, the analogous null model
compares actual Gini coefficients with expected
Ginis under the assumption of random assignments
of wins.

Because of formal idiosyncrasies in the compu-
tation of Gini coefficients, the analytical deriva-
tion of statistical moments for these coefficients
is exceedingly complex. As an alternative, we
derived the mean and standard deviation using
the following simulation: five firms compete for
20 years, with each firm having probability 1/5 of
winning in any year. Wins are distributed by a ran-
dom number generator, and after 20 periods wins
are counted and the Gini computed—the simula-
tion is repeated to N = 10,000 trials, a mean and
standard deviation are computed for the Gini coef-
ficients, and the simulations repeated for industries
of other sizes.

For example, in a hypothetical industry of
n = 5 firms, the simulation produced 10,000
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Figure 1. The Gini coefficient

20-year Ginis with mean = 0.28 and standard
deviation = 0.08; in an industry with n = 15
firms, the simulations produced mean = 0.47 and
standard deviation = 0.08. If an industry of five
firms produces an actual 20-year Gini of 0.40, we
compute a z-score (z = +1.50) as a measure of the
industry’s departure from a random distribution of
wins. This motivates the following hypothesis:

Hypothesis 2: Industry distributions of wins dif-
fer significantly from randomly generated distri-
butions of wins.

This hypothesis, like Hypothesis 1, is not an
assertion about a firm, but about a distribution of
firm performance. Corroborating Hypothesis 2 for
an industry would show that the distribution was
skewed, but not that any firm was dominant, or
that any firm had sustainable competitive advan-
tages. On the other hand, a significant Gini can
be interpreted as prima facie evidence of competi-
tive dominance by one or a few firms (a necessary
but not sufficient condition), a proposition easily
testable by closer inspection of the distribution.
For example, in National League baseball, the
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distribution 5,4,3,3,2,2,1,0,0,0,0,0 yielded a Gini
coefficient of 0.61, and z = 2.11. Using a two-
tailed test, a z-score of at least this magnitude
would occur only 2.8 percent of the time if wins
were distributed randomly. This suggests competi-
tive dominance, although not an extreme case—on
closer inspection we find that four teams won at
least three times, and seven of twelve teams won
at least once. This is not an instance of one-firm
competitive dominance—an interpretation is that
the Dodgers and Reds, combining for nine wins in
20 years, dominated National League competition
between 1969 and 1988.

Pareto parity

Although stochastic null models are statistically
convenient, they do not necessarily align with
researchers’ theories of competitive advantage, or
with their true performance expectations. As Star-
buck points out:

Very often social scientists ‘test’ their theories
against ritualistic null hypotheses (a) that the scien-
tists can always reject by collecting sufficient data
and (b) that the scientists would not believe no
matter what data they collected and analyzed. As
proofs of knowledge, such tests look ridiculous.
(Starbuck, 1994: 215)

Adopting discrete win frequencies as a depen-
dent variable suggests comparisons with the vast,
and still growing, literature on rank–frequency
relationships, which ranges across the physical,
biological, linguistic, and social sciences. The sem-
inal contribution, Vilfredo Pareto’s income dis-
tribution theory, proposed that, when individual
incomes are ranked, the rank–income relationship
follows the form I = cr−a , where I is income,
r is rank, c is a constant roughly equal to the
largest income, and a is a constant, usually in the
neighborhood of 1.5. In other words, income is
distributed such that Ir−a is a constant, and that,
with rank and income plotted on logarithmic axes,
the relationship is linear, with slope = −a.

Harvard sociologist George Zipf proposed a sim-
ilar model, with ranks (r) and frequencies (f )
related by the form f = cr−1(Zipf, 1949). This
variant on Pareto’s law sets a = 1 (a = 0 is perfect
parity, all ranks having equal frequencies). Zipf
tested this model across a variety of phenomena,
with impressive results: the ranks and frequen-
cies of words in James Joyce’s Ulysses, plotted

logarithmically, were linear with slope = −1; the
10th-ranked word appeared 2653 times, the 100th-
ranked word 265 times, and the 1000th-ranked
word 26 times. Moreover, Zipf found similarly
robust, Pareto-like relations in studies of Homer’s
The Iliad, and in Chaucer, Shakespeare, Chi-
nese literature, children’s speech, Hebrew speech,
American Indian speech, the Chicago Tribune, the
New York Times and the Encyclopedia Britan-
nica. Zipf also found power laws in schizophrenic
speech; in rail and bus travel; in the species and
genera of flowering plants and Chrysomelid bee-
tles; in scholarly publications; in telephone mes-
sages; in the tonal intervals of Mozart concertos; in
the ranks and sizes of cities, of service companies,
of manufacturing companies, and of occupations.

Zipf’s findings were replicated and extended by
other researchers. Champernowne (1953) applied
similar models to income distribution, Mandel-
brot (1953) applied them to language distributions,
and Steindl (1965) and others applied them to
the size distributions of firms (Simon and Bonini,
1958; Quandt, 1966; Singh and Whittington, 1975;
Sutton, 1998). Yuji Ijiri and Herb Simon pub-
lished a series of monographs (Ijiri and Simon,
1977) applying Pareto, Zipf, and other skew dis-
tributions to scholarly publications, the genera
of plants, the distributions of particles, and the
sizes and growth of new firms. Krugman (1996)
reported that the 1993 size distribution of U.S.
cities followed Zipf’s variant of Pareto’s law, again
with surprising accuracy: the log-linear slope was
−1.003, and the 10th ranked city (Houston), with a
population of 3.85 million people, was roughly 10
times larger than the 100th ranked city (Spokane),
with 370,000. Krugman also reported that ‘Zipf’s
law’ (a = 1) applied to every U.S. census since
1890, and to other countries, as well as to natu-
ral and social phenomena including earthquakes,
animal sizes, meteorites, business cycles, technol-
ogy dissemination, and the sizes and frequencies
of fragments from shattered urns.

Pareto relations gained renewed momentum
in the physical and social sciences through
recent developments in complexity theory, self-
organized criticality, complexity, and coevolution
(Gould, 1989; Kaufman, 1993; Gell-Mann, 1994;
Levinthal, 1997; McKelvey, 1999). From a com-
plexity theory perspective, firm performance arises
in a complex system in which firms interact
dynamically with each other and their environ-
ments to create highly variable, nondeterministic
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outcomes (Prigogine, 1980; Pascale, 1999; Ander-
son, 1999). Many phenomena in the physical sci-
ences are not, in this sense, complex: planets
follow predictable, nonvariable orbits, and crys-
tals follow an orderly, well-understood process in
which each atom occupies a defined space on a
lattice. But other systems of scientific and social-
scientific interest are complex, including biologi-
cal competition, weather, landscape formation, tec-
tonic plate movement, freeway driving, and share-
holder behavior.

Because complex systems are nondeterminis-
tic, their specific behaviors and outcomes cannot
be predicted, no matter how complex the the-
ory or how great the computational power. But
complexity theory asserts that these systems do
‘self-organize’ into broad behavioral and statis-
tical patterns, the most conspicuous of which is
the tendency to organize around Pareto-like power
laws (Bak, 1996). In geological studies of tur-
bidite sedimentation, the numbers of layers and
their thickness are related by a power law with
exponent a = 1.4; avalanche magnitude and fre-
quency follow a power law with a = 1.1; earth-
quake magnitude and frequency follow a = 1.4;
the numbers and lifetimes (until extinction) of gen-
era follow a = 2; the magnitude and frequency of
solar flares follow a = 1.5; and the magnitudes and
frequencies of ricepile and sandpile avalanches fol-
low different power laws, averaging roughly a = 2
(Chen and Bak, 1991; Grumbacher et al., 1993;
Carlson and Swindle, 1995; Frette, Christensen,
and Malthe-Sorensson, 1996; Bak, 1996). In brief,
complex physical phenomena of surprising diver-
sity follow a power law with a between 1 and 2.

Power laws may reveal hidden order or ‘self-
organization’ in complex phenomena, but there is
little cross-disciplinary consensus on precisely why
they work. Zipf’s original explanation invoked the
‘principle of least effort,’ which he derived from
the notions of ‘forces of diversification’ (D) and
‘forces of unification’ (U ). In brief, all competi-
tion is subject to D and U , and the value a rep-
resents their equilibrium, i.e., the quotient D/U :
when D exceeds U , then a > 1.0 and greater
disparity is observed; when U > D, the opposite
occurs. Zipf’s system leaves D and U imprecise,
but in organizational contexts they may be analo-
gous to forces such as institutional heterogeneity
and isomorphism (Meyer and Rowan, 1977), dif-
ferentiation and integration (Lawrence and Lorsch,
1969), or corporate expansions and assimilations

(Chandler, 1961). In strategy, a Zipf-like account
might predict that forces for disparity (firm-specific
resources, economic rents, monopoly power, indi-
vidual wealth, etc.) and parity (diffusion of innova-
tion, imitation, benchmarking, fads, bandwagons,
etc.) would produce outcomes balanced on a power
law with a = 1.

Zipf’s theory produced impressive empirical
predictions, but its underlying verbal account of
‘least effort’ and the interactions of D and U is not
wholly convincing. In particular, it remains unclear
how one would define D and U in context, or,
more importantly, why D and U should produce
an exponent in a power function (why not log(a),
or ea , or ax?). Ultimately, Zipf’s theory is sugges-
tive, and his intuitions possibly correct, but ‘least
effort’ does not yield a satisfactory explanation for
a power law with a = 1.

Ijiri and Simon, working with similar results,
produced a far more concise and convincing
account. In brief, Ijiri and Simon showed,
deductively and in simulation, that a power law
necessarily results from any process in which
competitors grow at rates independent of current
endowments. This underlying process—known as
‘Gibrat’s assumption,’ or the ‘law of proportionate
growth’—recognizes the empirical fact that, in
many growth processes, the absolute growth of
larger units exceeds that of smaller ones, but
only in proportion to current mass. Krugman used
this process to explain why size distributions
of cities take the Pareto form with a = 1,
and a variety of phenomena in the Ijiri–Simon
studies (word distributions, firm growth, scholarly
publications) were shown to follow proportionate
growth processes.

Proportionate growth provides an essential theo-
retical linkage, missing in Zipf’s account, between
underlying physical, social, or economic processes
and the forms of their resulting distributions. For
example, we know that if firm sizes follow a pro-
portionate growth process, then perfect parity can-
not occur, and there is little use proposing it as a
null model—the outcomes must form a skew dis-
tribution. Moreover, Ijiri and Simon showed that
the exponent a can be interpreted as a function of
entry conditions, an important linkage between the
power law and competitive processes. We revisit
this claim later in discussing our findings on firm
performance.

The theory of self-organized criticality has prod-
uced an alternative account of power laws, arguing
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that extended stable periods create long-lasting,
low-variance evolutionary stages, but that small
variations accumulate to produce high-variance
catastrophes (e.g., earthquakes, traffic jams, extinc-
tions, volcanic eruptions, stock market crashes),
much as in models of punctuated equilibrium (Bak,
1996). Whereas traditional equilibrium theories
tend to discount catastrophic events as outliers,
complexity theory treats catastrophes as system-
defining milestones, and incorporates them sta-
tistically. When plotted logarithmically, the high-
frequency evolutionary outcomes and low-frequ-
ency catastrophes organize themselves in linear
form, i.e., in a power law.

In brief, power laws have yielded abundant
empirical support and significant conceptual work,
but have not yet produced an integrated theory.
Taking previous empirical work as a guide, we
speculate that a power law, with a between 1
and 2, comprises a reasonable expectation for firm
performance. In the absence of further evidence,
we adopt Pareto’s formulation, as follows:

Hypothesis 3: Industry distributions of wins dif-
fer significantly from a power law with a = 1 .5 .

Natural parity

If conventional null models are incomplete, it
is not for lack of insight or sophistication. Re-
searchers’ expectations about firm performance
are, if anything, too well informed. They almost
certainly reflect biases informed by shared aca-
demic training, experience, shared vocabulary, and
social networks, and may embody logics arising
from the very business distributions the researchers
are trying to explain. In general, we are unlikely to
produce surprising results by comparing business
distributions only to each other, and we should
welcome compatible models imported from other
disciplines. Thus, we hypothesize the following
null model:

Hypothesis 4: Industry distributions of wins dif-
fer significantly from those in other competi-
tive domains.

Nonbusiness distributions are intrinsically inter-
esting, but are also of conceptual value, both as
alternatives to conventional strategy models and
as counterpoints to theories of self-organization. It

could be argued, for example, that a theory of self-
organization does not follow from the existence
of complex processes and power laws. In profes-
sional baseball, we know that many (though not
all) owners and regulators value competitive par-
ity, and implement rules and restrictions designed
to promote ‘socially-efficient team quality’ (Canes,
1974), through draft restrictions, revenue-sharing,
team salary caps and player free agency (Fort and
Quirk, 1995). In the 20-year period 1945–64, the
New York Yankees won the American League pen-
nant 15 times—since 1964, when owners agreed
to an unrestricted free-agent draft (over the objec-
tions of the Yankees and Dodgers), no team has
approached such dominance. In professional sports
generally, a large body of research has shown
how powerful team owners and regulators proac-
tively use social and political processes to establish
objectives for performance distributions (usually to
suppress competitive dominance), closely monitor
the results, and apply remedies by manipulating
game rules and structures (Demmert, 1973; Davis,
1974; Canes, 1974; Noll, 1974; Quirk and Fort,
1992; Fort and Quirk, 1995).

Under these institutional conditions, in which
self-interested agents proactively engineer per-
formance distributions to promote welfare pref-
erences, it seems anomalous to call the out-
comes ‘self-organized.’ Moreover, the regulation
of business performance in advanced economies,
though immeasurably more complex than in sports,
involves analogous economic, institutional, and
social processes (Schotter, 1986; Powell and
DiMaggio, 1991; Chang, 1996). In principle, any
domain’s rules and structures determine its range
of feasible performance distributions, and undesir-
able distributions can be reengineering through the
‘visible hand’ of contractual arrangements, prop-
erty rights, and other institutional features (Chand-
ler, 1977; Williamson, 1985; Coase, 1988). More-
over, these distributions necessarily reflect stake-
holders’ welfare preferences (i.e., implicit theories
of procedural and distributional justice), as in base-
ball’s strong revealed and expressed preference for
competitive parity over the past 35 years.

We develop these ideas further in discussing the
empirical findings, but for now we emphasize the
following: (1) unlike earthquakes and other natu-
ral phenomena, performance distributions need not
be exogenous nor self-organizing (or at least not
predominantly so); (2) for any game, institutional
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rules and structures influence the range of feasi-
ble performance distributions; and (3) institutional
arrangements are both descriptive and norma-
tive, i.e., they embody and reveal stakeholders’
joint preferences about procedural and distribu-
tional justice.

DATA AND RESULTS

Empirical Gini coefficients

Gini coefficients seldom appear in strategy re-
search, or in any research using continuous indus-
try data, for two reasons. First, financial mea-
sures are unstable across industries (e.g., returns
on assets are lower in capital-intensive industries,
some firms and industries earn negative returns
in some years), making Ginis computationally
intractable; and second, industry entry and exit
produce incomparable competitive sets over long
periods, affecting estimates of n. The first problem
is ameliorated by converting raw data to ranks,
which also facilitates direct comparisons across
competitive domains (though it entails a loss of
data). But even with ranks the second problem
persists—over time, more than n firms may have
opportunities to finish ‘first,’ even if only n firms
compete in any given year.

One way to address industry entry and exit is
to confine the sample to the most stable subset
of industry competitors, generally the largest com-
petitors. For example, among all chemical produc-
ers in the United States, 42 appeared in the Fortune
500 in 1996, and over the period 1980–99 that
number ranged from 38 to 43, with most entry
and exit confined to the rankings 450–500. Simi-
larly, among U.S. food producers, between 41 and
55 firms appeared in the Fortune 500 in the period
1980–99, with entry and exit confined mainly to
rankings below 450.

Moreover, in the Fortune 500, ‘entry’ rarely
means industry entry, and ‘exit’ rarely means
industry exit—more commonly, entry means ris-
ing into the Fortune 500 from somewhere just
below the list, and exit means falling below the 500
rank, or merger/acquisition, usually in the same
industry. This is not always the case (e.g., For-
tune 500 firms go bankrupt; tobacco firms acquire
food companies), but the exceptions are infrequent.
In the worst case, the disruptions are confined to
misestimates of n (the number of firms), which

would have the least disturbance in industries with
the greatest entry and exit (i.e., largest n). Using
Ginis, the best assessment of n arises with a fixed
number of firms; but, in the face of messy facts,
and with some adjustment, the Fortune 500 may
provide a reasonable context for estimating Ginis.

Table 1 presents Gini coefficients for 21 U.S.
manufacturing industries for the 20-year period
1980–99, taken from Fortune 500 data for those
years. The data exclude: service industries (these
were excluded from the lists prior to 1994); indus-
tries that changed definition during the period;
industries that did not exist throughout the period;
industries defined, in the researchers’ assessment,
as over-broad industry sectors (e.g., ‘electronics,’
‘motor vehicles and parts’); and conglomerates
ill fitted to any industry (e.g., Berkshire Hath-
away, Textron, General Electric). In some cases,
industries were redefined within Fortune’s indus-
try groups (e.g., ‘motor vehicles’ consists of GM,
Ford, and Chrysler, separated from their suppliers).

In Table 1, the first column (n) is the average
number of firms for each industry over the 20-year
period, and the next five columns are the Ginis for
five performance measures provided in the Fortune
500 data: total profit, return on sales (ROS), return
on equity (ROE), 1-year yield to investors and
10-year yield to investors (Fortune’s measures of
investor yield do not adjust for financial risk).
The final column is a linear combination of the
five performance measures, i.e., the mean of the
five Ginis. All Gini coefficients were calculated
as in the earlier examples, using the formula in
the Appendix.

Hypothesis 1: Perfect parity

Hypothesis 1 is a ‘straw null,’ hypothesizing
nonzero Gini coefficients. As expected, the results
in Table 1 are quite inconsistent with a null of
perfect competitive parity. The mean of the 21
overall industry Gini coefficients is large (m =
0.60), and the standard deviation relatively small
(s = 0.12). The overall Ginis range widely across
industries (from 0.74 (computers) to 0.27 (motor
vehicles)), suggesting some pairwise differences,
but in 17 of 21 industries the Ginis fall between
0.56 and 0.74. Of the 105 Ginis, only one (1-year
investor return in soft drinks) produced perfect par-
ity (Gini = 0).

The results do vary significantly across perfor-
mance measures, with very large Ginis for profits
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Table 1. Gini coefficients: 1980–99

Industry n Profitability Investor yield Overall

Profit ROS ROE 1-yr 10-yr Industry
Gini Gini Gini Gini Gini mean

Mining and crude oil production 14 0.51 0.32 0.51 0.35 0.64 0.47
Foods 50 0.75 0.91 0.68 0.28 0.82 0.69
Textiles 13 0.62 0.51 0.52 0.30 0.54 0.50
Apparel 12 0.88 0.72 0.58 0.35 0.54 0.61
Publishing and printing 18 0.94 0.69 0.76 0.52 0.68 0.72
Chemicals 40 0.96 0.48 0.49 0.41 0.60 0.59
Petroleum refining 27 1.00 0.72 0.54 0.47 0.76 0.70
Aerospace 13 0.83 0.72 0.70 0.16 0.52 0.59
Pharmaceuticals 15 0.95 0.81 0.77 0.37 0.75 0.73
Toys and sporting goods 5 0.65 0.52 0.72 0.30 0.67 0.57
Motor vehicles 3 0.35 0.30 0.10 0.10 0.50 0.27
Computers 25 0.98 0.76 0.65 0.59 0.72 0.74
Brewing 3 1.00 0.85 0.80 0.35 0.65 0.73
Rubber and plastic products 12 0.93 0.60 0.46 0.35 0.74 0.62
Industrial and farm equipment 32 0.90 0.57 0.48 0.27 0.78 0.60
Metal products 19 0.94 0.75 0.69 0.36 0.69 0.69
Scientific and photographic

equipment
16 0.95 0.74 0.63 0.07 0.64 0.61

Forest and paper products 36 0.89 0.62 0.65 0.09 0.74 0.60
Metals 20 0.85 0.67 0.48 0.12 0.70 0.56
Soft drinks 2 1.00 1.00 0.80 0.00 0.20 0.60
Transportation equipment 8 0.34 0.39 0.39 0.39 0.41 0.38

Median 15.00 0.90 0.69 0.63 0.35 0.67 0.60
Mean 18.24 0.82 0.65 0.59 0.30 0.63 0.60
S.D. 12.82 0.21 0.18 0.17 0.15 0.14 0.12

Overall results: n = 105 Gini coefficients
Median Gini 0.64
Mean Gini 0.60
Standard deviation 0.24

(mean = 0.82), and smaller coefficients for 1-year
investor returns (mean = 0.35). Neither of these
findings is surprising, and they support the con-
struct validity of the Ginis. Absolute profit corre-
lates with firm size, and the same large competitors
tend to maintain profit dominance. For example,
IBM, the largest computer firm, led the computer
industry in profit in 17 of 20 years, but led only
six times in ROS. Similarly, Dupont, the largest
chemicals firm, led in profits 15 of 20 years, but
never led in ROS.

By contrast, 1-year returns to investors is the
measure most likely to resemble a random walk,
and the Ginis are accordingly lowest for this
measure. In five industries—foods (Gini = 0.28),
industrial and farm equipment (0.27), metal prod-
ucts (0.12), forest products (0.09), and scien-
tific and photographic equipment (0.07)—no firm
led its industry in 1-year investor returns more
than twice. The same does not hold for 10-year

investor returns, which, like profit, are serially
correlated by definition. Offsetting the random
properties of stock prices (which tend to sup-
press Ginis) with a carryover of prior-period out-
comes (which enhances them), the 10-year yields
produced results resembling those of the profit
rate measures.

The empirical Ginis raise questions at the heart
of strategy research: How do we explain firm per-
formance disparities? Why do the disparities vary
across industries? Can the disparities be attributed
to economic and strategic variables (concentration,
collusion, product differentiability, firm conduct,
firm resources, etc.)? For the moment, however, we
defer these questions—if perfect parity is empiri-
cally improbable, and if some measures are serially
correlated for obvious reasons, then perfect par-
ity is not a solid foundation for theory-building or
empirical analysis.
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Hypothesis 2: Stochastic parity

Hypothesis 2 compares empirical Gini coefficients
with those obtained using random distributions of
wins (the simulation model and z-score computa-
tion were as described earlier). Table 2 shows the
results for industry sizes corresponding to the For-
tune 500 data. For example, for n = 5 (toys and
sporting goods), the simulation produced 10,000
Ginis with mean = 0.28, and standard deviation
0.10.1 For n = 14 (mining and crude oil produc-
tion), the mean was 0.45, and the standard devia-
tion 0.08. In general, the simulated Ginis increase
in the range from n = 2 firms (mean Gini = 0.18)
through n = 20 (mean Gini = 0.52), then decline
slowly as n rises.2

Table 3 shows z-scores for all industries and per-
formance measures. Whereas 18 of the 21 indus-
tries had overall Ginis of at least 0.50, only eight of
the 21 coefficients produced statistically significant
z-scores at a < 0.01. The z-scores indicate sig-
nificant variation by industry, with five industries
producing z-scores below +1 (mining and crude
oil production, textiles, motor vehicles, metals and
transportation equipment), and five producing z-
scores above +3 (foods, pharmaceuticals, com-
puters, brewing, and soft drinks). The results also
vary by performance measure, with overall means
ranging from z = +4.50 (for profit) to z = −1.11
(1-year return to investors), and two of the five
measures (profit and ROS) significant at a < 0.01.

Stochastic parity can be defined as performance
consistent with random processes, and Hypothesis
2 is supported if the z-scores are generally large
and statistically significant. Overall, the results
support Hypothesis 2, doing little to refute a pre-
sumption of widespread, persistent disparities in
firm performance. Of the 105 Ginis, 87 (82.9%
of the total) were positive, and 49 (46.7%) were
statistically significant at a < 0.01. The Wilcoxon
rank-sum test, which gives a z-score based on
ranking the 105 obtained Ginis in the same array

1 The Ginis approximated normal distributions for all n except
n = 2, which had the highest probability of zero Gini (0.18) and
was positively skewed.
2 The pattern for n > 20 firms is an artifact of the nondivisibility
of wins, combined with the arbitrary selection of period t =
20 years: when the number of firms exceeds 20, the mean wins
per firm (20/n) is less than one; since no firm can achieve a
partial win, zero Gini would be unattainable for n > 20. Thus,
where n > 20, perfect parity occurs not when all n firms win
t /n times, but when 20 different firms win once over the period.
Because the probability that any firm will win more than once
declines as n rises, the simulated Ginis decline as n exceeds 20.

Table 2. Expected Gini coefficients

Industry Simulated Gini coefficients
(10,000 trials)

n Mean S.D.

Mining and crude oil
production

14 0.45 0.08

Foods 50 0.29 0.11
Textiles 13 0.44 0.09
Apparel 12 0.42 0.09
Publishing and printing 18 0.51 0.08
Chemicals 40 0.34 0.10
Petroleum refining 27 0.44 0.09
Aerospace 13 0.44 0.09
Pharmaceuticals 15 0.47 0.08
Toys and sporting goods 5 0.28 0.10
Motor vehicles 3 0.22 0.11
Computers 25 0.47 0.09
Brewing 3 0.22 0.11
Rubber and plastic

products
12 0.42 0.09

Industrial and farm
equipment

32 0.40 0.10

Metal products 19 0.52 0.08
Scientific and

photographic
equipment

16 0.48 0.08

Forest and paper
products

36 0.37 0.10

Metals 20 0.53 0.08
Soft drinks 2 0.18 0.14
Transportation equipment 8 0.35 0.09

Median 15.00 0.42 0.09
Mean 18.24 0.39 0.09
S.D. 12.82 0.10 0.01

as the simulated Ginis, is highly significant (z =
+7.00), and points to the operation of causal forces
beyond random performance assignments.

As variations on stochastic parity, and in an
attempt to approximate the obtained Ginis, we sim-
ulated three additional conditions. Unlike Model
1, which assumes random performance assign-
ments in each period (independence across peri-
ods), Models 2, 3, and 4 are ‘contagion’ models, in
which performance is not independent from period
to period. The models assume each industry has
the same quantity of a causal factor x (set at 20
units), which is allocated randomly, one unit at a
time, so that each firm’s probability of receiving a
unit of x is 1/n in each allocation. In all industries
with n > 20, a maximum of 20 firms can receive
units of x. In all three models, a firm’s probabil-
ity of a ‘win’ for any year is proportionate to its
stock of x at the beginning of that year. In Model
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Table 3. Deviations from stochastic parity

Industry z-scores

Profitability Investor yield Overall

n Profit ROS ROE 1-yr 10-yr mean

Mining and crude oil production 14 0.75 −1.63 0.75 −1.25 2.37 0.20
Foods 50 4.18 5.64 3.54 −0.09 4.82 3.62
Textiles 13 2.00 0.78 0.89 −1.56 1.11 0.64
Apparel 12 5.11 3.33 1.78 −0.78 1.33 2.15
Publishing and printing 18 5.37 2.25 3.12 0.12 2.12 2.60
Chemicals 40 6.20 1.40 1.50 0.70 2.60 2.48
Petroleum refining 27 6.22 3.11 1.11 0.33 3.56 2.87
Aerospace 13 4.33 3.11 2.89 −3.11 0.89 1.62
Pharmaceuticals 15 6.00 4.25 3.75 −1.25 3.50 3.25
Toys and sporting goods 5 3.70 2.40 4.40 0.20 3.90 2.92
Motor vehicles 3 1.18 0.73 −1.09 −1.09 2.54 0.45
Computers 25 5.67 3.22 2.00 1.33 2.78 3.00
Brewing 3 7.09 5.73 5.27 1.18 3.91 4.64
Rubber and plastic products 12 5.67 2.00 0.44 −0.78 3.56 2.18
Industrial and farm equipment 32 5.00 1.70 0.80 −1.30 3.80 2.00
Metal products 19 5.25 2.87 2.13 −2.00 2.12 2.07
Scientific and photographic

equipment
16 5.88 3.25 1.88 −5.12 2.00 1.58

Forest and paper products 36 5.20 2.50 2.80 −2.80 3.70 2.28
Metals 20 4.00 1.75 −0.63 −5.12 2.12 0.42
Soft drinks 2 5.86 5.86 4.43 −1.29 0.14 3.00
Transportation equipment 8 −0.11 0.44 0.44 0.44 0.67 0.38

Median 15.00 5.20 2.50 1.88 −1.09 2.54 2.18
Mean 18.24 4.50 2.60 2.01 −1.11 2.55 2.11
S.D. 12.82 1.97 1.83 1.69 1.78 1.25 1.19
Wilcoxon rank-sum z-score 4.73 4.20 4.19 −2.16 4.63 3.43

Overall results (105 z-scores)
Median z-score 2.12
Median z-score 2.11
Standard deviation z-score 2.49
Wilcoxon rank-sum z-score 7.00
Note: Values in bold type are statistically significant at a <0.01 (two-tailed).

2, we assume that the initial distribution of x per-
sists throughout the 20-year period; in Model 3
we assume that a win bestows a new unit of x, so
that the proportions of x change each period (to
the marginal benefit of the latest winner), with the
total stock of x after 20 periods increasing to 40
units; in Model 4, we assume a moving window
of 20-year periods, so that wins occurring more
than 20 periods previously have no bearing on
current probabilities.3 More descriptively: Model

3 Models 2, 3, and 4 are contagion conditional probability models
resembling ‘Polya’s urn model,’ in which prior outcomes modify
successive probabilities. Similar models are associated with
Bose–Einstein statistics in physics, explaining the empirical
frequency of particle distributions (see Feller, 1968; Hill, 1974;
Ross, 1993).

2 simulates a world of competitive focal points, in
which advantages, once achieved, determine long-
term performance; Model 3 entails a growing stock
of advantages and ever-evolving allocations across
firms; and Model 4 simulates a world in which
total advantage remains constant, but firm-specific
advantages are redistributed in the long run.

The results are shown in Table 4, and sug-
gest two observations. First, Models 2 and 3 are
not inconsistent with the Fortune data—under
Model 2, the data show slightly more disparity
than the simulation, and under Model 3 slightly
more parity. Neither model would allow us to
reject the assumption of randomly assigned per-
formance causes that, over a period of 20 years,
are highly resistant to redistribution—fixed and
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Table 4. Stochastic Models 2, 3 and 4

Industry Actual Gini Overall industry performance

Model 2 Model 3 Model 4

Sim Industry Sim Industry Sim Industry
Gini z-score Gini z-score Gini z-score

Mining and crude oil production 0.47 0.59 −1.50 0.68 −2.62 0.80 −4.71
Foods 0.69 0.59 1.43 0.71 −0.29 0.84 −2.50
Textiles 0.50 0.58 −1.00 0.67 −1.89 0.79 −4.14
Apparel 0.61 0.56 0.62 0.65 −0.44 0.77 −2.00
Publishing and printing 0.72 0.66 1.00 0.73 −0.14 0.84 −2.40
Chemicals 0.59 0.60 −0.14 0.71 −1.71 0.84 −5.00
Petroleum refining 0.70 0.64 0.86 0.73 −0.43 0.85 −3.00
Aerospace 0.59 0.58 0.12 0.67 −0.89 0.79 −2.86
Pharmaceuticals 0.73 0.61 1.71 0.69 0.05 0.81 −1.33
Toys and sporting goods 0.57 0.37 1.67 0.45 0.86 0.57 0.00
Motor vehicles 0.27 0.28 −0.08 0.35 −0.47 0.47 −0.95
Computers 0.74 0.65 1.29 0.74 0.00 0.85 −2.20
Brewing 0.73 0.28 3.46 0.35 2.23 0.47 1.23
Rubber and plastic products 0.62 0.56 0.75 0.65 −0.33 0.77 −1.87
Industrial and farm equipment 0.60 0.62 −0.29 0.72 −1.71 0.84 −4.80
Metal products 0.69 0.67 0.33 0.74 −0.71 0.84 −3.00
Scientific and photographic equipment 0.61 0.63 −0.29 0.71 −1.43 0.82 −3.50
Forest and paper products 0.60 0.61 −0.14 0.72 −1.71 0.84 −4.80
Metals 0.56 0.68 −2.00 0.76 −3.33 0.85 −5.80
Soft drinks 0.60 0.22 2.23 0.29 1.48 0.39 0.81
Transportation equipment 0.38 0.47 −0.90 0.56 −1.50 0.69 −2.82
Median 0.60 0.59 0.33 0.69 −0.47 0.81 −2.82
Mean 0.60 0.55 0.43 0.63 −0.71 0.75 −2.65
Standard deviation 0.12 0.14 1.29 0.14 1.30 0.14 1.90
Wilcoxon rank-sum z-score −1.23 1.71 3.60

Summary of models
All models: Advantages distributed randomly; performance proportional to advantages
Model 2: Stock of industry advantages fixed; initial distribution of advantages persists throughout
Model 3: Stock of industry advantages doubles over 20 years; distribution of advantages adjusted for recent performance
Model 4: Industry advantages fixed; distribution adjusted for recent performance; advantages decay
Note: Values in bold type are statistically significant at a < 0.01 (two-tailed).

perfectly resistant in Model 2; growing and imper-
fectly resistant in Model 3. Second, Model 4 is
not consistent with the data, though it fits well for
some industries. Based on the Fortune data, we
would conclude that most empirical distributions
display significantly less dominance than produced
by Model 4 assumptions.

Hypothesis 3: Pareto parity

Pareto’s law, with a = 1.5, produces a distribution
in which wins for the leading firm are in the
proportion r1.5 to 1 to those of a firm ranked r ,
i.e., the leading firm’s wins are 21.5 (roughly 2.83)
times greater than those of the second-ranked firm.
Finding the Pareto number of wins in an industry
requires the value of c that sums all firms’ wins

to 20, i.e., c = (
20

∑n

r=1 r−1.5
)−1

. For n = 5 firms,
c = 11.36, with (11.36)/(21.5) = 4.02 wins for the
second-leading firm, etc. The corresponding Gini
for n = 5 is 0.58.

It is important to note that Pareto’s law and
its variants manifest themselves across very large
samples (of words, cities, species, etc.) which,
for all practical purposes, are distributed contin-
uously. As such, 20 discrete observations of firm
performance do not constitute a sufficient test of
Pareto’s law. The Pareto distribution, like other
skew distributions, is what Ijiri and Simon termed
an ‘extreme hypothesis,’ i.e., a broad-form null
model not explicitly confirmable, but subject to
rejection and theoretical refinement. If the data
do not disconfirm the proposed form, then more
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specific forms and underlying logics can be inves-
tigated. In the present context, it was possible to
calculate theoretical Ginis corresponding to alter-
native values of a (e.g., a = 1.0), in order to
consider whether observed Ginis are consistent
with any power law. But again, the distribution
f = cr−1.5 does not uniquely define Gini = 0.58.
Other distributions can produce the same Gini,
and the standard error of estimate for t = 20 is
too large to warrant statistical conclusions about
whether any power law describes the data.

Hypothesis 3 hypothesizes that the obtained z-
scores will differ significantly from Pareto’s law
with a = 1.5, and this appears to be supported
in Table 5—there is less competitive dominance
in the Fortune data than predicted in the Pareto
model. Table 5 presents Ginis for two variants
of Pareto’s parity—a = 1.0 and a = 1.5—and
shows distributions of wins for n = 2, 5, 10,
20, and 40 firms. The results can be interpreted
by comparing the Pareto z-scores to the Fortune
data. In earlier comparisons to stochastic Model
1, the Fortune z-scores for overall performance
were independent of industry size (rz,n = 0.19),
allowing comparisons of observed z-scores with

those obtained from Pareto models. The data in
Table 5 confirm that the Fortune z-scores are gen-
erally lower than those under the a = 1.5 Pareto
model, and generally higher that those under the
model a = 1.0. In iterating to a model of best
fit, the a value best fitted to the data is roughly
a = 1.25.

We noted earlier that, although no cross-discipli-
nary consensus has emerged on the causes of
power laws, Ijiri and Simon have shown, in
research on the size distributions of firms, that the
exponent a can be interpreted as a function of entry
conditions. Specifically, where p is the probability
that the next unit of growth (by analogy, a ‘win’)
is assigned to a new entrant, then a can be com-
puted as a = (1 − p)−1. In the Ijiri–Simon simu-
lations, entry and exit had no impact on whether
the distributions took on the Pareto form, but only
affected the value of the exponent a (i.e., greater
net entry increases a since more new firms led to
greater performance disparity, which follows from
their lower probability of future wins). Moreover,
the Pareto-like distributions were robust limiting
forms, arising irrespective of initial endowments
(e.g., of firm size).

Table 5. Pareto parity

Rank r−1.0 a = 1.0 r−1.5 a = 1.5

Firsts Firsts Firsts Firsts Firsts Firsts Firsts Firsts Firsts Firsts
n = 2 n = 5 n = 10 n = 20 n = 40 n = 2 n = 5 n = 10 n = 20 n = 40

1 1.000 13.33 8.76 6.84 5.56 4.60 1.000 14.78 11.37 10.03 9.22 8.65
2 0.500 6.67 4.38 3.42 2.78 2.30 0.353 5.22 4.01 3.54 3.26 3.05
3 0.333 2.92 2.25 1.85 1.53 0.192 2.18 1.93 1.77 1.66
4 0.250 2.19 1.71 1.39 1.15 0.125 1.42 1.26 1.15 1.08
5 0.200 1.75 1.37 1.11 0.92 0.089 1.02 0.89 0.82 0.77
6 0.167 1.14 0.93 0.77 0.068 0.68 0.63 0.59
7 0.143 0.98 0.79 0.66 0.054 0.54 0.50 0.47
8 0.125 0.85 0.69 0.57 0.044 0.44 0.40 0.38
9 0.111 0.76 0.62 0.51 0.037 0.37 0.34 0.32

10 0.100 0.68 0.56 0.46 0.032 0.32 0.30 0.28
11 0.091 0.51 0.42 0.027 0.25 0.23
12 0.083 0.46 0.38 0.024 0.22 0.21
13 0.077 0.43 0.35 0.021 0.19 0.18
14 0.071 0.39 0.33 0.019 0.18 0.16
15 0.067 0.37 0.31 0.017 0.16 0.15
16 0.063 0.35 0.29 0.016 0.15 0.14
17 0.059 0.33 0.27 0.014 0.13 0.12
18 0.056 0.31 0.26 0.013 0.12 0.11
19 0.053 0.29 0.24 0.012 0.11 0.10
20 0.050 0.28 0.23 0.011 0.10 0.09

Sum 3.599 20.00 20.00 20.00 20.00 16.55 2.168 20.00 20.00 20.00 20.00 18.74
Gini 0.33 0.41 0.46 0.52 0.51 0.48 0.58 0.66 0.74 0.79
z-score (Model 1) 1.07 1.30 0.78 −0.14 2.89 2.14 3.00 3.00 3.00 4.50
Mean z-score 1.18 3.13
Fortune mean z-score 2.11
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This supports the hypothesis that firm per-
formance, like firm size, follows a proportional
growth heuristic. This would be consistent with
our findings for stochastic parity, in which per-
formance did not conform to Model 1 stochastic
parity (random outcomes), but resembled stochas-
tic Models 2 and 3, which assume performance
proportional to past wins. It may also be possible to
explain tentatively why the ideal zero-entry model
(a = 1) slightly understates the model of best fit
(a ≈ 1.25). The simplest explanation is that three
of the five performance measures do not obey pro-
portional growth processes—for profit and 10-year
investor returns, a = 1 should be an underestimate,
and for 1-year returns a = 1 should be an overes-
timate. Second, as noted earlier, the Ginis assume
zero entry, even though firms do move on and off
the Fortune lists at the margins. As such, the prob-
ability of a ‘first’ by a new entrant was small, but
nonzero (this would also explain the slight nega-
tive bias in Ginis for 1-year investor returns). To fit
a = 1.25 would require a new entry probability of
0.20, or roughly three new firms entering a Fortune
industry of 18 competitors. This rate of entry is
slightly higher on average than the turnover of For-
tune 500 firms, but would account for the obtained
departure from a = 1.

Hypothesis 4: Natural parity

To compare business and nonbusiness distribu-
tions, we gathered 20-year performance data in
a variety of nonindustrial competitive domains
(sports, games, politics, etc.), and computed Ginis
using the same method applied to the Fortune
data. The data were drawn from various databases,
journals, books, almanacs, and web sites, and the
domains included team sports, individual sports,
politics, games (billiards, bridge, chess), and enter-
tainment. No systematic sampling pattern was
used, aside from an implicit preference for acces-
sible data. Table 6 shows the 107 obtained Ginis,
simulated Ginis under stochastic Model 1, and the
corresponding z-scores.

Hypothesis 4 predicted that the industry z-
scores would differ significantly from those in
the nonbusiness domains. Table 7 summarizes the
Table 6 data, with comparisons to the Fortune
data. Hypothesis 4 was not supported: the non-
industrial data produced 107 Ginis with mean =
0.56, compared to 0.60 for the 105 Fortune Ginis,
and their standard deviations (0.24) were the same.

The mean nonindustrial z-score was +2.44, com-
pared to +2.11 in the Fortune data, and their stan-
dard deviations were comparable (2.20 and 2.49,
respectively). The Wilcoxon rank-sum test pro-
duced an overall z-score of +7.38 in the nonindus-
trial data, compared to +7.00 in the Fortune data.

Clearly, the nonindustrial statistics strongly re-
semble those in the Fortune data, and it would be
of great theoretical interest to explain this resem-
blance (a naı̈ve hypothesis is that performance
z-scores have mean of about +2 in relation to
a stochastic parity null). The final section of the
paper offers further theoretical and empirical direc-
tions for such research. For now, it seems rea-
sonable to suggest that firm performance distribu-
tions are not unique in the competitive landscape,
and that there exists some level of ‘natural parity’
(or ‘ordinary disparity’) which researchers work-
ing from conventional stochastic models would
not observe, and may attribute to industry- or
firm-specific factors. At a minimum, the data sug-
gest that firm performance adheres to substan-
tially the same empirical pattern as performance
in other domains.

RECAPITULATION

The paper investigates the consequences of using
winning as the dependent variable, and explores
the theme that researchers’ interpretations of firm
performance depend on their models of com-
petitive parity. If researchers expect perfect par-
ity (Hypothesis 1), they find rampant perfor-
mance disparities, and require large-scale auxiliary
models to explain discrepancies between theory
and fact (e.g., the theory of perfect competition
requires theories of monopoly, oligopoly, monop-
olistic competition, etc.). If researchers are pre-
pared for randomly generated performance dispar-
ities (Hypothesis 2), then the facts are less jarring,
and explanations will tend to emphasize extreme
cases. If researchers suspect underlying propor-
tional growth processes, they postulate skew distri-
butions (Hypothesis 3), and study departures from
simple growth and entry heuristics; and if they
posit nonindustrial benchmarks, they study devia-
tions from ‘natural parity’ (Hypothesis 4), making
structural comparisons across business and non-
business domains.
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Table 6. Nonindustrial domains

Domain n SIMULATED ACTUAL

Mean S.D. Gini z-score

World Chess Championship 1886–1952 75 0.21 0.11 0.84 5.73
World Chess Championship 1955–98 75 0.21 0.11 0.77 5.09
Australian Chess Championship 1924–67 40 0.34 0.10 0.67 3.30
U.S. Chess Championship 1960–79 50 0.29 0.11 0.83 4.91
Wimbledon (tennis): men’s singles title 1979–98 100 0.16 0.10 0.70 5.40
Wimbledon (tennis): women’s singles title 1979–98 60 0.25 0.11 0.86 5.55
Wimbledon (tennis): men’s singles title 1959–78 100 0.16 0.10 0.60 4.40
Wimbledon (tennis): women’s singles title 1959–78 60 0.25 0.11 0.72 4.27
Davis Cup tennis 1969–88 12 0.42 0.09 0.84 4.67
Davis Cup tennis 1949–68 10 0.39 0.09 0.78 4.33
NCAA college football AP rank 1977–96 80 0.20 0.10 0.60 4.00
NCAA college football AP rank 1957–76 80 0.20 0.10 0.56 3.60
Academy Award: best actor 1971–90 250 0.07 0.08 0.10 0.38
Academy Award: best actor 1951–70 250 0.07 0.08 0.00 −0.88
Academy Award: best actress 1971–90 250 0.07 0.08 0.19 1.50
Academy Award: best actress 1951–70 250 0.07 0.08 0.19 1.50
Academy Award nominations by studio 1957–76 10 0.39 0.09 0.58 2.11
Miss America 1980–99 50 0.29 0.11 0.27 −0.18
Miss America 1960–79 50 0.29 0.11 0.42 1.18
Pulitzer Prize national reporting 1965–84 50 0.29 0.11 0.34 0.45
Pulitzer Prize international reporting 1965–84 30 0.41 0.09 0.52 1.22
Pulitzer Prize commentary 1970–89 50 0.29 0.11 0.44 1.36
Top ten albums and singles by record company 1960–79 50 0.29 0.11 0.66 3.36
National Football League: Super Bowl 1967–86 28 0.43 0.09 0.69 2.89
PGA Tour money winnings (golf) 1980–99 130 0.15 0.10 0.56 4.10
PGA Tour money winnings (golf) 1960–79 60 0.25 0.11 0.80 5.00
PGA Tour money winnings (golf) 1939–59 50 0.29 0.11 0.56 2.45
European Order of Merit rank (golf) 1971–90 100 0.16 0.10 0.75 5.90
Ryder Cup (golf) 1927–73 2 0.18 0.14 0.70 3.71
Women’s U.S. Open Golf Championship 1977–96 80 0.20 0.10 0.42 2.20
Women’s U.S. Open Golf Championship 1957–76 80 0.20 0.10 0.59 3.90
British Women’s Open Golf Championship 1976–96 80 0.20 0.10 0.10 −1.00
Walker Cup (golf) 1957–95 2 0.18 0.14 0.70 3.71
Men’s U.S. Amateur Golf Championship 1977–96 80 0.20 0.10 0.28 0.80
Men’s British Amateur Golf Championship 1977–96 60 0.25 0.11 0.10 −1.36
Australian Women’s Amateur Golf Championship 1948–67 60 0.25 0.11 0.50 2.27
Australian Men’s Amateur Golf Championship 1948–67 80 0.20 0.10 0.27 0.70
MLB American League wins 1961–80 12 0.42 0.09 0.71 3.22
MLB American League wins 1941–60 8 0.35 0.09 0.77 4.67
MLB National League wins 1969–88 12 0.42 0.09 0.61 2.11
MLB National League wins 1949–68 10 0.39 0.09 0.67 3.11
World Cup Baseball 1953–98 30 0.41 0.09 0.98 6.33
National Basketball Association wins 1979–98 27 0.44 0.09 0.81 4.11
National Basketball Association wins 1959–78 14 0.45 0.08 0.78 4.13
NBA Most Valuable Player Award 1970–89 100 0.16 0.10 0.72 5.60
Big East basketball wins 1979–98 10 0.39 0.09 0.53 1.56
NCAA Men’s basketball champions 1970–89 100 0.16 0.10 0.62 4.60
NCAA Men’s basketball champions 1950–69 100 0.16 0.10 0.56 4.00
Sheffield Shield Australian cricket wins 1956–75 5 0.28 0.10 0.33 0.50
English County Cricket 1906–29 16 0.48 0.08 0.78 3.75
National Hockey League Stanley Cup 1974–93 20 0.53 0.08 0.83 3.75
National Hockey League Stanley Cup 1954–73 12 0.42 0.09 0.84 4.67
VFL Australian football titles 1899–1918 12 0.42 0.09 0.61 2.11
VFL Australian football titles 1932–51 12 0.42 0.09 0.55 1.44
VFL Australian football titles 1960–79 9 0.37 0.09 0.55 2.00
Olympic summer games medal count 1896–1984 60 0.25 0.11 0.93 6.18

Copyright  2002 John Wiley & Sons, Ltd. Strat. Mgmt. J., 24: 61–86 (2003)



Varieties of Competitive Parity 77

Table 6. (Continued )

Domain n SIMULATED ACTUAL

Mean S.D. Gini z-score

Women’s World Figure Skating Championships 1970–89 25 0.47 0.09 0.49 0.22
Men’s World Figure Skating Championships 1970–89 25 0.47 0.09 0.59 1.33
Women’s U.S. Outdoor Speed Skating Championship 1970–89 30 0.41 0.09 0.35 −0.67
Men’s U.S. Outdoor Speed Skating Championship 1970–89 30 0.41 0.09 0.14 −3.00
Men’s World Cup Alpine Skiing—overall points 1969–88 40 0.34 0.10 0.70 3.60
Women’s World Cup Alpine Skiing—overall points 1969–88 40 0.34 0.10 0.66 3.20
Australian Men’s Handball Championship 1948–67 25 0.47 0.09 0.81 3.78
U.S. Men’s Handball Champion (singles) 1970–89 40 0.34 0.10 0.86 5.20
U.S. Men’s Handball Champion (doubles) 1960–79 40 0.34 0.10 0.72 3.80
U.S. professional rodeo: All-Around Cowboy 1969–88 20 0.53 0.08 0.66 1.63
Australian Women’s Field Hockey Champion 1946–66 5 0.28 0.10 0.85 5.70
Australian Women’s High Diving Champion (10 m) 1949–68 16 0.48 0.08 0.73 3.13
Australian Men’s High Diving Champion (10 m) 1949–68 20 0.53 0.08 0.65 1.50
U.S. Presidential elections by party 1920–96 2 0.18 0.14 0.00 −1.29
U.S. Presidential elections by party 1840–1916 3 0.22 0.11 0.35 1.18
U.S. Senate majority party 87th–106th Congress: 1961–99 2 0.18 0.14 0.40 1.57
U.S. Senate majority party 67th–86th Congress: 1921–60 2 0.18 0.14 0.15 −0.21
U.S. House of Reps. majority party 87th–106th Congress: 1961–99 2 0.18 0.14 0.70 3.71
U.S. House of Reps. majority party 67th–86th Congress: 1921–60 2 0.18 0.14 0.20 0.14
U.S. state governors by party 1980–99 2 0.18 0.14 0.50 2.29
U.S. state governors by party 1960–79 2 0.18 0.14 0.65 3.36
Australian prime minister by party, ministries 38–57: 1968–99 2 0.18 0.14 0.00 −1.29
Australian House of Representatives by majority party 1940–87 2 0.18 0.14 0.90 5.14
Australian Senate by majority party 1940–87 2 0.18 0.14 0.00 −1.29
English Women’s Snooker Champions 1961–80 20 0.53 0.08 0.72 2.38
English Men’s Amateur Snooker Championship 1966–85 40 0.34 0.10 0.42 0.80
English Men’s Amateur Snooker Championship 1946–65 40 0.34 0.10 0.49 1.50
Maltese Amateur Snooker Championship 1950–69 20 0.53 0.08 0.92 4.88
Welsh Amateur Snooker Championship 1965–84 20 0.53 0.08 0.63 1.25
Australian Amateur Snooker Championship 1965–84 30 0.41 0.09 0.76 3.89
Australian Amateur Billiards Championship 1935–60 20 0.53 0.08 0.95 5.25
World Snooker Championship 1965–85 80 0.20 0.10 0.77 5.70
Women’s bridge champions (pairs): U.S. Spring Nationals 1951–70 12 0.42 0.09 0.36 −0.67
Team bridge champions: U.S. Spring Nationals 1951–70 12 0.42 0.09 0.51 1.00
Women’s bridge champions (pairs): All-America Regionals 1948–70 12 0.42 0.09 0.19 −2.56
American Bridge Assoc. Championships (open pairs): 1950–70 16 0.48 0.08 0.48 0.00
U.S. Women’s IBC bowling champion 1965–84 40 0.34 0.10 0.10 −2.40
Men’s Professional Bowler’s Association champion 1965–84 60 0.25 0.11 0.62 3.36
U.S. intercollegiate rowing champion 1950–69 30 0.41 0.09 0.80 4.33
U.S. intercollegiate rowing champion 1970–89 30 0.41 0.09 0.69 3.11
U.S. NCAA lacrosse champion 1970–89 30 0.41 0.09 0.84 4.78
U.S. amateur fast-pitch softball champions 1969–89 80 0.20 0.10 0.34 1.40
U.S. harness racing champion drivers 1967–86 15 0.47 0.08 0.62 1.88
Kentucky Derby winning jockey 1940–59 12 0.42 0.09 0.43 0.11
Kentucky Derby winning jockey 1960–79 12 0.42 0.09 0.43 0.11
World Grand Prix driving champion 1969–88 15 0.47 0.08 0.58 1.38
Indianapolis 500 champion 1956–75 20 0.53 0.08 0.42 −1.38
Australian Ladies Badminton Championships 1947–66 16 0.48 0.08 0.70 2.75
Australian clay target shooting champion 1948–67 25 0.47 0.09 0.35 −1.33
Australian Sailing Championship (18-foot class) 1948–67 20 0.53 0.08 0.80 3.38
Australian Star Class Sailing Championship 1947–67 20 0.53 0.08 0.74 2.63
All nonindustrial domains: n = 107 Ginis
Median 27.00 0.34 0.10 0.61 2.63
Mean 43.17 0.32 0.10 0.56 2.44
S.D. 50.56 0.13 0.02 0.24 2.20
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Table 7. Natural parity

Gini coefficients Industrial
domains

(105 Ginis)

Nonindustrial
domains (107

Ginis)

Diff.

Median 0.64 0.61 0.03
Mean 0.60 0.56 0.04
S.D. 0.24 0.24 0.00

z-scores
Median z-score 2.12 2.63 −0.51
Mean z-score 2.11 2.44 −0.33
S.D. z-score 2.49 2.20 0.29
Wilcoxon rank-sum test (z-score) 7.00 7.38 −0.38

Overall Wilcoxon rank-sum test 0.60
(for difference in z across domains)

Table 8. Summary of parity models

Parity model Key assumption

Perfect parity All firms perform the same

Stochastic parity
Model 1 Performance is random
Model 2 Performance causes are random and fixed
Model 3 Performance causes are random and growing
Model 4 Performance causes are random and decaying

Pareto parity
Model a = 1.0 Performance grows proportionally; follows f = cr−1.0

Model a = 1.5 Performance grows proportionally; follows f = cr−1.5

Natural parity Performance similar across competitive domains

Table 8 summarizes the four models’ key assu-
mptions, and Figure 2 compares the models, indi-
cating their tendencies to retain or reject the null.
The upper area of Figure 2 shows the distribu-
tion of all 212 z-scores in the study: 105 from
the industry data (five measures, 21 industries) and
107 from the nonindustrial data. The z-scores were
taken relative to the random assignment of perfor-
mance (as shown in Tables 3 and 6). The lower
area shows how the various models would inter-
pret these data; at the extremes, there is a large
area of rejection on grounds of performance dis-
parity in the perfect parity model (and no possible
rejection on grounds of abnormal parity); whereas
the natural parity model tolerates a wider band
of performance variance, with smaller areas of
rejection for abnormal disparity and parity. The
other models provide alternative interpretations as
discussed earlier.

Each of the four models has potential applica-
tions (e.g., for different domains or performance

measures), and each produces its own theoreti-
cal and empirical emphases. Applications to the
Fortune data have indicated their comparative ana-
lytical properties and the strengths and weaknesses
of each model. This final section pulls together
loose threads from earlier sections into four inte-
grative observations: on future research, the theory
of natural parity, industry vs. firm-specific advan-
tage, and the role of extreme cases in the theory
of competitive advantage.

Future research

Reconceptualizing performance as win frequen-
cies presents empirical and theoretical opportuni-
ties for researchers, of which only a few could
be explored here. To extend the present work,
it would be possible in many of the domains to
examine not only wins, but also a complete set
of ranks, and thus to evaluate period-to-period
performance decay. In prevailing strategy theo-
ries, superior performance arises from firm-specific
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Figure 2. Parity models compared

resources or dynamic capabilities, but ranking the
dependent variable enables us to untangle two
very different performance components: signifi-
cant Ginis in any given year (competitive domi-
nance), and significant correlations between Ginis

over 5-, 10-, or 20-year spans (persistence). These
two components are conceptually independent. It
would be possible, for example, to have per-
formance persistence without competitive domi-
nance—this requires only that performance ranks
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in an industry correlate over long periods, without
significant Gini coefficients in any single year. The
independence of dominance and persistence has
not been widely recognized in strategy research,
and raises important puzzles for strategy theory.
For example, it would be of theoretical interest
to consider whether, under a resource-based view,
sustainable competitive advantages can coexist
with competitive parity.

In the Fortune data, performance disparities var-
ied significantly across measures. The paper has
emphasized overall performance, but another rea-
sonable next step is to show how different per-
formance measures accommodate different parity
models. The Fortune data suggest that total prof-
its, and to some extent 10-year investor yields,
follow a model resembling Pareto’s law with
a = 1.5, whereas ROS and ROE adhere more
closely to a power law with a = 1.25, and 1-year
investor returns are best explained by stochastic
Model 1 (random performance). Overall perfor-
mance resembles the patterns for ROS and ROE,
but is, in fact, a linear combination of offset-
ting effects.

Subsequent research could take a given per-
formance measure, say ROS, and compare out-
liers on that measure against some plausible par-
ity model (for ROS, either stochastic Model 2
or 3, or Pareto Model a = 1). For example, nei-
ther stochastic Model 3 nor Pareto Model a = 1
can be rejected for the ROS distributions in 18
of 21 industries, leaving only the foods, brew-
ing, and soft drink industries as outliers. These
industries would comprise a research agenda on
20-year ROS, with other industries’ distributions
attributable to the proportional growth heuris-
tic. Further investigation in foods, for example,
would show that only five firms led the indus-
try in ROS over the 20 years (the distribution was
9,8,1,1,1, with 45 firms without firsts)—Kellogg
led the industry nine times and Wrigley eight
times. In this industry, a presumption of nonran-
dom advantage seems warranted, and economic
theories can be deployed with good effect, i.e.,
not to account for random performance dispari-
ties, or disparities attributable to simple heuristics,
but to explain genuine economic anomalies. As
it turns out, industrial organization and antitrust
provide well-documented accounts of Kellogg’s
dominance through alleged limit pricing, exclu-
sionary practices, and ‘shared monopolization’ of
the ready-to-eat breakfast cereal industry (see, for

example, Schmalansee, 1978; Scherer, 1979; Har-
ris, 1979).

Researching natural parity

Table 9 shows the industrial and nonindustrial
domains with the highest performance z-scores,
i.e., the upper tail of the distribution in Figure 2;
and Table 10 shows those with the lowest z-
scores, i.e., the lower tails. Under a natural parity
model, these extreme cases take on special signif-
icance, with the middle quartiles comprising more
typical distributions. The juxtapositions in these
tables highlight unusual but interesting perfor-
mance questions such as: Why do Ginis for chess
championships resemble Ginis for profit rates in
the brewing industry? Why are Ginis higher in
baseball than in politics (most of the time), but
similar in baseball and the publishing industry?
Why are Ginis higher in billiards than in horse-
racing? Why are Ginis higher in chess than in Miss
America pageants?

A potentially fruitful approach to these questions
arises from the institutional considerations already
discussed, and suggests the possibility of a broad,
cross-domain performance framework grounded
broadly in ‘economic sociology’ (Coase, 1988;
Granovetter, 1985; Swedberg, Himmelstrand, and
Brulin, 1990), and in the theory of distributional
justice (Rawls, 1971; Nozick, 1974; Singer, 1978;
Deutsch, 1985). We do not develop the theory here,
but a clear requirement is to identify mechanisms
that explain variations in parity across competitive
domains, entailing industrial models as a special
case. For example, chess produces higher z-scores
than Miss America pageants because Miss Amer-
ica pageants suppress labor pool advantages (each
state is allowed only one entrant), disable increas-
ing returns to winning (states are required to send
new contestants each year), and measure perfor-
mance subjectively (a panel of celebrity judges).
By contrast, world chess championships legislate
increasing returns to winning (the defending cham-
pion advances automatically to the finals), and
measure performance objectively (in a game of
skill). In this way, variations in competitive parity
have less to do with the local factors that generally
preoccupy competitors (e.g., moving chess pieces,
the charm or beauty of Miss America contestants),
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Table 9. Domains of least parity: upper quartile z-scores

z-score n = 53 industries(in bold)/domains Leader

7.09 Brewing (profit) Anheuser-Busch (20)
6.33 World Cup Baseball 1953–98 Cuba (17)
6.22 Petroleum refining (profit) Exxon (20)
6.20 Chemicals (profit) Dupont (15)
6.18 Olympic summer games medal count 1896–1984 USA (12)
6.00 Pharmaceuticals (profit) Merck (13)
5.90 European Order of Merit rank (golf) 1971–90 Ballesteros (6)
5.88 Scientific and photographic equipment (profit) 3M (12)
5.86 Soft drinks (profit) Coca-Cola (20)
5.86 Soft drinks (ROS) Coca-Cola (20)
5.73 Brewing (ROS) Anheuser-Busch (17)
5.73 World Chess Championship 1886–1952 Lasker (7)
5.70 Australian Women’s Field Hockey Champion 1946–66 Western Australia (17)
5.70 World Snooker Championship 1965–85 Reardon (6)
5.67 Computers (profit) IBM (17)
5.67 Rubber and plastic products (profit) Goodyear (15)
5.64 Foods (ROS) Kellogg (9)
5.60 NBA Most Valuable Player Award 1970–89 Abdul-Jabbar (6)
5.55 Wimbledon (tennis): women’s singles title 1979–98 Navratilova (8)
5.40 Wimbledon (tennis): men’s singles title 1979–98 Sampras (5)
5.37 Publishing and printing (profit) Gannett (13)
5.27 Brewing (ROE) Anheuser-Busch (16)
5.25 Metal products (profit) Gillette (14)
5.25 Australian Amateur Billiards Championship 1935–60 Marshall (14)
5.20 Forest and paper products (profit) International Paper (8)
5.20 U.S. Men’s Handball Champion (singles) 1970–89 Alvarado (10)
5.14 Australian House of Representatives by majority party 1940–87 Labor (19)
5.11 Apparel (profit) Levi-Strauss (11)
5.09 World Chess Championship 1955–98 Kasparov (7)
5.00 Industrial and farm equipment (profit) Caterpillar (10)
5.00 PGA Tour money winnings (golf) 1960–79 Nicklaus (8)
4.91 U.S. Chess Championship 1960–79 Fischer (7)
4.88 Maltese Amateur Snooker Championship 1950–69 Borg (10)
4.82 Foods (10-yr returns) Tyson (8)
4.78 U.S. NCAA lacrosse champion 1970–89 Johns Hopkins (8)
4.67 Davis Cup tennis 1969–88 USA (8)
4.67 MLB American League wins 1941–60 NY Yankees (14)
4.67 National Hockey League Stanley Cup 1954–73 Montreal Canadians (11)
4.60 NCAA Men’s basketball champions 1970–89 UCLA (5)
4.43 Soft drinks (ROE) Coca-Cola (18)
4.40 Toys and sporting goods (ROE) Mattel (12)
4.40 Wimbledon (tennis): men’s singles title 1959–78 Laver (4)
4.33 Aerospace (profit) Boeing (10)
4.33 Davis Cup tennis 1949–68 Australia (15)
4.33 U.S. intercollegiate rowing champion 1950–69 Cornell (6)
4.27 Wimbledon (tennis): women’s singles title 1959–78 King (6)
4.25 Pharmaceuticals (ROS) Merck, Amgen (6)
4.18 Foods (profit) Sara Lee (5)
4.13 National Basketball Association wins 1959–78 Boston Celtics (12)
4.11 National Basketball Association wins 1979–98 Chicago Bulls (6)
4.10 PGA Tour money winnings (golf) 1980–99 Norman, Strange (3)
4.00 Metals (profit) Alcoa (10)
4.00 NCAA college football AP rank 1977–96 Miami (4)

5.13 Mean 10.94/20
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Table 10. Domains of greatest parity: lower quartile z-scores

z-score n = 53 industries (in bold)/domains Leader

−5.12 Scientific and photographic equipment (1-yr returns) three firms (2)
−5.12 Metals (1-yr returns) Maxxam (3)
−3.11 Aerospace (1-yr returns) McDonnell-Douglas (3)
−3.00 Men’s U.S. Outdoor Speed Skating Championship 1970–89 Hamilton (4)
−2.80 Forest and paper products (1-yr returns) Sonoco (2)
−2.56 Women’s bridge champions (pairs): All-America Regionals 1948–70 Stein et al., Halloran et al. (2)
−2.40 U.S. Women’s IBC bowling champion 1965–84 Morris (2)
−2.00 Metal products (1-yr returns) five firms (2)
−1.63 Mining and crude oil prod’n (ROS) Burlington, Newmont (3)
−1.56 Textiles (1-yr returns) West Point (4)
−1.38 Indianapolis 500 champion 1956–75 Foyt (3)
−1.36 Men’s British Amateur Golf Championship 1977–96 McEvoy (2)
−1.33 Australian clay target shooting champion 1948–67 Thomas (3)
−1.30 Industrial and farm equipment (1-yr returns) three firms (2)
−1.29 Soft drinks (1-yr returns) Coca-Cola, Pepsico (10)
−1.29 U.S. Presidential elections by party 1920–96 Democrat, Republican (10)
−1.29 Australian prime minister by party, ministries 38–57: 1968–99 Labor, Liberal (10)
−1.29 Australian Senate by majority party 1940–87 Labor, Liberal (10)
−1.25 Mining and crude oil prod’n (1-yr returns) Vulcan (4)
−1.25 Pharmaceuticals (1-yr returns) three firms (2)
−1.09 Motor vehicles (ROE) GM (8)
−1.09 Motor vehicles (1-yr returns) GM (8)
−1.00 British Women’s Open Golf Championship 1976–96 Massey (2)
−0.88 Academy Award: best actor 1951–70 20 actors (1)
−0.78 Apparel (1-yr returns) three firms (2)
−0.78 Rubber and plastic products (1-yr returns) Cooper, Mark IV (3)
−0.67 Women’s U.S. Outdoor Speed Skating Championship 1970–89 Merrifield (3)
−0.67 Women’s bridge champions (pairs): U.S. Spring Nationals 1951–70 Wagar/Rhodes (4)
−0.63 Metals (ROE) Worthington, Wierton (3)
−0.21 U.S. Senate majority party 67th–86th Congress: 1921–60 Democrat (11)
−0.18 Miss America 1980–99 three states (2)
−0.11 Transportation equipment (profit) Brunswick (6)
−0.09 Foods (1-yr returns) three firms (2)

0.00 American Bridge Assoc. Championships (open pairs): 1950–70 Pietri et al. (3)
0.11 Kentucky Derby winning jockey 1940–59 Arcaro (4)
0.11 Kentucky Derby winning jockey 1960–79 Hartack (4)
0.12 Publishing and printing (1-yr returns) Amer. Greetings, R&R (3)
0.14 Soft drinks (10-yr returns) Coca-Cola (12)
0.14 U.S. House of Reps majority party 67th-86th Congress: 1921–60 Democrat (12)
0.20 Toys and sporting goods (1-yr returns) Mattel (8)
0.22 Women’s World Figure Skating Championships 1970–89 Witt (4)
0.33 Petroleum refining (1-yr returns) Valero (3)
0.38 Academy Award: best actor 1971–90 Hoffman (2)
0.44 Transportation equipment (ROS) Harley-Davidson (8)
0.44 Rubber and plastic products (ROE) Rubbermaid, Gencorp (4)
0.44 Transportation equipment (ROE) Harley-Davidson, Polaris (5)
0.44 Transportation equipment (1-yr returns) Harley-Davidson (8)
0.45 Pulitzer Prize national reporting 1965–84 four papers (2)
0.50 Sheffield Shield Australian cricket wins 1956–75 Victoria (8)
0.67 Transportation equipment (10-yr returns) Trinity, Brunswick (5)
0.70 Chemicals (1-yr returns) Georgia Gulf (3)
0.70 Australian Men’s Amateur Golf Championship 1948–67 three players (2)
0.73 Motor vehicles (ROS) Chrysler (9)

−0.82 Mean 4.66/20
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than with domain-level welfare preferences and
institutional engineering.

A natural parity theory would explain, for all
competitive domains, what industrial organization
explains in industry, namely the institutional rules
and conditions that produce performance variance
across domains. The dependent variable is the Gini
coefficient (z-score), and the aim is to explain
cross-domain variance using relatively few insti-
tutional features. A variety of methods could be
used in empirical research, including economet-
ric methods, case analyses, event studies (as in
the baseball research), and experimental meth-
ods. Though we only suggest the barest essen-
tials here, a natural parity theory would be of
significant interest, providing a theoretical coun-
terpoint to emerging complexity-based theories of
self-organization, and suggesting important sub-
sidiary linkages to the theory and practice of public
policy and antitrust, and to theories of distributive
and procedural justice.

Industry- and firm-specific advantage

Strategy research features an ongoing debate con-
cerning the relative importance of industry, corpo-
rate and firm-specific sources of advantage (Han-
sen and Wernerfelt, 1989; Rumelt, 1991; McGahan
and Porter, 1997). The data presented here empha-
size intraindustry variance and do not enter directly
into this debate, but they suggest the following
connections. First, the Ginis and z-scores indicate
the presence of firm-specific advantages, but when
random processes and proportional growth heuris-
tics are accounted for, intraindustry variance is
reduced to a few extreme cases. Second, variance
on cross-industry Ginis is surprisingly low (S.D. =
0.12 on mean = 0.60), but larger across z-scores,
and larger for some performance measures (profit,
ROS) than others (10-year investor yields). In gen-
eral, the data support a presumption of significant
industry-based differences in competitive condi-
tions (it was possible to take one interindustry Gini
measurement, and this supported the presence of
industry-level advantage—the z-scores were large,
due chiefly to abnormal profit rates in pharmaceuti-
cals: for ROS, the z-score was +6.60 (pharmaceu-
ticals led all industries in 17 of the 20 years), and
for ROE +5.50 (pharmaceuticals led 12 times)).

Though the current findings are consistent
with interindustry and intraindustry variance, its
emphases lay elsewhere, toward enabling strategy

research to identify genuine outliers, whether
they be firms, industries, or nonbusiness domains.
Having said that, it is worth noting that the balance
of the evidence in this study weighs more to the
industry view than is common in recent strategy
research. The Ginis show intraindustry variance,
but this variance seems congenial to more
concise explanations than those proposed in most
theories of competitive advantage. By contrast,
interindustry variance appears (as noted above)
to justify a more wide-ranging, cross-domain
performance theory than is currently available.

The art of overexplaining

If superior firm performance stemmed from the
cultivation and protection of firm-specific com-
petitive advantages, it would produce distribu-
tions abnormal under any parity model proposed
in this paper. The data suggest that such distri-
butions are rare, and confined mainly to perfor-
mance measures with blatant serial correlation (see
Table 9). As such, theories concerning long-term,
firm-specific competitive advantages do not seem
to have widespread application in industry. That
such theories flourish reflects the predominance of
stochastic parity as the null model—in comparison
with the other models presented here, stochastic
parity discriminates poorly between ordinary per-
formers and outliers, and invites more explanation
than the evidence requires.

If firm-specific competitive advantages exist,
they are, in all likelihood, local and extreme phe-
nomena, and highly resistant to useful generaliza-
tion. The data do not prove that assertion, but they
are consistent with it, and—in light of the rising
dominance of firm-specific strategy theories—it
is worth considering (see also Starbuck, 1992,
1993). Under alternative parity models, which
enable comparisons with diverse scientific phe-
nomena and nonbusiness competitive domains, the
simple fact is that nothing unusual is happening in
the performance of most industries. The action is
in the extreme cases, and that is where strategy
theories add their value. If they contribute to strat-
egy research, the models proposed here do so by
pointing the way to those outliers.
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APPENDIX

The Gini Coefficient

In Figure 1 (see text), the Gini coefficient
is (Area A)/((Area A + Area B) − 20). Compu-

tationally, in domains with n < 20 competitors, the
numerator and denominator are:

Area A = 10(n + 1) −
n∑

i=1

χi(n + 1 − i)

(Area A + Area B) − 20 = 10(n − 1)

where:

n = number of competitors
i = competitors 1 through n, arrayed from last

(fewest firsts) to first (most firsts)
χi = number of firsts for competitor i over the

20-year span.

In domains with n ≥ 20 competitors, the numer-
ator and denominator are:

Area A = 210 −
n∑

i=1

χi(n + 1 − i)

(Area A + Area B) − 20 = 190
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